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We disagree with the deduction of the equations of motion for the Davydov soliton and of the results
in the paper by Jia-Xin Xiao et al. [Phys. Rev. A 44, 8375 (1991)]. The weakness and faults of the

Davydov theory are also indicated.

PACS number(s): 87.10.+e¢, 87.15.He, 65.90.+1, 05.90.+m

I. INTRODUCTION

Xiao and Yang have investigated in Ref. [1] (hereafter
denoted as paper I) thermodynamic properties (the
specific heat), of a-helix protein and calculated the criti-
cal temperature of the Davydov soliton as well. Their
method can be summarized as follows (1) They show and
prove that the motion of the Davydov soliton based on
the equations of motion of the Davydov soliton and its
solutions can satisfy the equation of motion of ¢* chains,
and they deal with some of the thermodynamic properties
of the a-helix protein, such as the critical temperature for
the existence of the Davydov soliton and the linear
specific heat of a protein, by using classical statistical
mechanics of ¢* chains. (2) They believe that the
influence of the thermal fluctuation on the value of pa-
rameters in equations of motion of a soliton can be dis-
cussed in terms of the equations of motion of operators
for the exciton and phonons. Starting from the Davydov
Hamiltonian and Heisenberg’s equations of motion for
the operators, Xiao and Yang study the thermal effect of
the Davydov soliton and use a temperature-dependent
coefficient for the nonlinear term in a nonlinear
Schrodinger equation they obtained. After reading this
paper in detail we disagree with the deduction of these
equations and in our conclusions we shall indicate the
disagreements in Secs. II and III.

II. THE EQUATIONS OF MOTION OF OPERATORS
FOR THE EXCITONS AND PHONONS

It is known that the Hamiltonian of the Davydov
theory in protein molecules is of the form [2]
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u, =3, (#/2MNQq)" (b, +b' )e®. Here B} (B,)
and b, (b,) are the creation (annihilation) operators of
exciton and phonon, respectively, u,, is this displacement
of the nth amino acid molecule, and P, is the correspond-
ing momentum. M is the molecular mass and y is the
exciton-phonon coupling constant. & is the single mole-
cule excitation energy and J is the nearest neighbor reso-
nance interaction and (), is the energy of the phonon.
Xiao and Yang have deduced the equations of motion for
the operator, B,, starting from the above Hamiltonian
and Heisenberg’s equation,
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These are just Egs. (A3)-(A4) in the Appendix of paper I
(Ref. [1]). According to Ref. [3] Davydov has suggested
that the corresponding collective excitation states of the

protein molecule can be described by the ansatz wave
function
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Now we calculate the thermal average of every term in
Egs. (3) and (4) in terms of the following formula:
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Substituting Egs. (6) and (7) in Eq. (4) and making use of
the following equalities,
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we can obtain that the thermal average of Eq. (4) is zero,
instead of Eq. (A 16) as in paper I, i.e.,

Fj, = 6P, —Je Wy 1+, ) F X By i1 —Ba1)
9)

we cannot obtain any equations of motion
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of ¥, as noted above from the Davydov theory and
Heisenberg’s equation. This shows clearly that the equa-
tion of motion of the Davydov soliton at a finite tempera-
ture cannot be obtained from Heisenberg’s equation in
the Davydov theory. This result exposes the weakness
and fault of the Davydov theory, more precisely, the
Davydov wave function. However, Eq. (9) or Eq. (A16)
in paper I is the basis of paper I from which Xiao and
Yang obtained the critical temperature of the Davydov
soliton and the linear specific heat of a protein.

For obtaining this equation, Xiao and Yang have to
calculate the thermal average of every term in Eq. (5) or
Eq. (A4) in paper I by utilizing Egs. (7) and (8). In this
approximation of W,,.,~ W, they get for the thermal
average of Eq. (5),
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This is Eq. (A12) in paper I. By comparing Eq. (10) with
Eq. (A14) in paper I,
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they obtain the corresponding relation

JJ'=Je 7. (12)
Therefore, again from Eq. (A13) in paper I, i.e.,
i, = 6y —J (Y 1+ ¥ 4 )XY By 1 —By—1) , (13)

and making use of this corresponding relation, they ob-
tain Eq. (9) or Eq. (A16) in paper 1.

In Xiao and Yang’s deduction, there are at least three
problems:

(1) Xiao and Yang attempt to get the equation of ¢,
Eq. (9), from the equation of |¢,|?, Eq. (10), but we can
only get from Eq. (10) in the continuum limit,
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According to Xiao and Yang’s idea, the approximate
method, and W=1lawaly,|*Hf(kpT), and inserting the
representation of d8/9x, i.e., the solution of Eq. (3) in the
text of paper I into Eq. (14), the equation becomes
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we can only get
2Bz, )= (26— 41)B(x,1)
J 2 32 2
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Obviously, this is not the Eq. (9) devised by Xiao and
Yang. At the same time, it also is not a standard non-
linear Schrodinger equation, which is not the desired re-
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sult for Xiao and Yang and us.

(2) On the other hand, due to the fact that
U,(0)=(¢,lu,|,)

=_22 |¢nlzeiqna(gqn +B:Qn) ’
instead of (¢v|un|¢v)=ﬁn( t), which is devised by Xiao
and Yang, and making use of Eq. (8), we can only get for
the thermal average of Eq. (5),
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instead of Eq. (10). Therefore, Eq. (A12) in paper I is also incorrect.

(3) The origin of Eq. (A14) in paper I is ambiguous. Xiao and Yang do not explain clearly this equation. On the oth-
er hand, the corresponding relation, J —»J'=Je ™~ ¥ for Eq. (13), is also incorrect, that is to say, the equation of motion
of ¢,(¢) at finite temperature is not Eq. (9). In practice, the equations of motion of the Davydov soliton at finite temper-
ature can be obtained from the Hamilton equation in the quantum soliton problem through utilizing Egs. (2), (6), (7),
(8), and
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(note: We cannot adopt (H,,),={¢,|H. +H,|d,) +2(v| U} H,U,|v) for the wave function (6), strictly speak-
ing). They are of the form [5]
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Adopting Xiao and Yang’s or Davydov’s approxima-
tion,

Wlnnilz W=%aa0|¢n |2Hf(kBT) ’

In addition, from the above-mentioned study, we also
find a weakness in the Davydov theory. Now we discuss
this problem. It is known that the equation of motion of
the soliton in the protein molecules can be found out by

we also cannot obtain Eqs. (A16)—(A18) in paper I from using the following four methods. Hamilton’s equations

Eqgs. (16) and (17). [2-5,8,9]

Thus, the corresponding relation, Eq. (12), and the oY, o(H)
equations of motion of the Davydov soliton at finite tem- ﬁT - 59
perature in paper I, are invalid. Therefore, the results of and "

the critical temperature, T, of the Davydov soliton and 3B
the linear specific heat of a protein obtained from these i—= Ban _8(H) ,
equations (A16)-(A18) in paper I are also unreliable. ot 8Ban
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where

and the Euler-Lagrange equation [6,10]
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and the Schrodinger equation [7,10,12] is
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and the Heisenberg equation [8—13] is
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and so on, where H is a Hamiltonian of the system. In
the general case, the equation of motion of the soliton ob-
tained from the four methods above should be basically
the same and consistent for the same Hamiltonian or
theory. (Certainly, the equations of motion of the soliton
can also be obtained from the variational method.) How-
ever, this conclusion is contrary to the Davydov theory;
for example, the equations of motion of the Davydov soli-
ton cannot be obtained at all from Heisenberg’s equation
in the Davydov theory as stated above. This is a weak-
ness or fault of the Davydov theory. This shows that the
Davydov theory is not self-consistent. The crucial reason
for the fault of the inconsistency mentioned above is that
the Davydov wave function, Eq. (6), is imperfect and im-
proper for the protein molecules. According to the re-
sults from our studies [14], the protein molecules are a
biological self-organization in which a collective excita-
tion results from a localized fluctuation and the deforma-
tion of the structure caused by the energy released by
ATP (adenosine tripohosphate molecules) hydrolysis has
coherent features, that is to say, the state of both excitons
and phonons is a coherent state [14]. Therefore, the exci-
tons and the phonons should be described by a coherent
wave function. However, the Davydov wave function,
Eq. (6), is not symmetric: part of wave function of the
phonon is coherent, but that of the exciton is not in Eq.
(6). The latter is an eigenstate of the number operator
N =2nB,:TB,,; this describes the state of a single (collec-

tive) exciton, i.e., the Davydov wave function is restricted
to the subspace of a single (collective) excitation, N =1.
Therefore, in the Davydov theory a soliton is exactly one
exciton (spread out over several sites) plus the resulting
acoustic deformation, just so the Davydov theory exhibits
the above difficulty.

However, if we adopt the following quasicoherent wave
function [8-19],

.
10),0,(0lv),

=1
80=4

1+ S ¢,(1)B,

in our theory to describe the collective excitation and the
collective motion resulting from the energy released by
ATP hydrolysis in the protein molecules, we may avoid
the above-mentioned difficulty in the Davydov theory,
i.e., the equations of motion of the soliton can also be de-
duced from Heisenberg’s equation for the operators now,
and it is basically the same as the one obtained from the
other three methods mentioned above. The thermal aver-
age of the equation of motion of the soliton is not zero
now in our theory. In fact our wave function, Eq. (18), is

not an eigenstate of the number operator N, =2,,B,IB,,.
It belongs to a large space with N =0,1. It represents
rather a superposition of a state with no exciton and a
state with one exciton. If it is represented as

|¢V>Z-Il\—exr> 10).,0,(0)v),

S, (1)B)

then this is a coherent state. Therefore, our wave func-
tion can better represent the nature of collective excita-
tion in the protein molecules. Therefore, if we adopt
again the following more sophisticated Hamiltonian in
our theory, i.e., [8-19]
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simultaneously, where r, and p,=mf, are the normal
coordinate of the nth oscillator and its canonical conju-
gate momentum, respectively; w, and w, are the diagonal
and nondiagonal elements of the dynamic matrix and w,
is also the Einstein frequency. 2y;=0w3/du, and
2x,=0w?/du, are a change of energy of vibration of
molecular lattice and the coupling energy between the
neighboring molecules by unit extension. Meanwhile, Eq.
(19) is also different from Takeno’s [20] in content, mean-
ing, form, and terms, then the equations of motion and
properties of the soliton in our theory are different from
the Davydov soliton. In Eq. (19), our soliton contains
more than one exciton, this state being a coherent super-
position of zero plus one “inner excitation,” which is con-
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sistent with the proposition in current research in which
it is mostly assumed that the soliton in proteins should
contain more than one exciton. Meanwhile, the results,
for example, the soliton energy, the specific heat, and the
lifetimes of the soliton obtained from our theory are more
justifiable compared with the Davydov solution
[8-13,15-17], it more closely approaches the experimen-
tal data in the protein molecules [8,15-17]. Our theory
could possibly address the main problems that the
Davydov theory faces, i.e., thermal stability and the life-
time of the soliton. In practice, after studying the
influence of the temperature on the soliton, we find that it
is still quite stable in the biological temperature range
[15,18], and its lifetime can achieve 107°-10"% at 310 K
[18], which is more than ten thousand times greater than
one of the Davydov soliton. The critical temperature of
the soliton is about 348-357 K [19].

III. THE DAVYDOYV SOLITON CANNOT SATISFY
THE EQUATION OF MOTION OF A ¢* CHAIN

It is incorrect to say that the Davydov soliton satisfies
the equation of motion of a ¢* chain, which Xiao and
Yang do in paper 1. It is known that the Davydov soliton
is a dynamic self-sustaining entity arising from a self-
trapping of amide-I vibrons (excitons) interacting with
low-frequency longitudinal phonons, namely, it is a in-
tramolecular excitation (exciton) (spread out over several
sites) motion together with the local chain deformation.
The Davydov soliton follows a nonlinear Schrodinger
equation,

iﬁ—a——A’+a2Ja—2—2XaiB(x t) |$(x,1)=0
ar ax? ax ' ’

(A'=6+W-—=2J), (20

3’ , 02 2xa 9

——Vi—— —— e 2—

32 93x2 B(x,1) iv; axltﬁ(x,t)] 0
(Vi=a?w/M) (1)

or

7 i_ ' 2 82 4)(2(12 2 —

that A'+ta Jax2+MV%(1_S2)1¢(x,t)| ¥(x,1)=0

(S*=v¥/v} . (2
This is just Egs. (2)-(3) in paper I, instead of the follow-
ing ¢* equation

3? 3?
a;ﬂ(x,t )— Vgﬁﬂ(x,t)+bB3(x,t)—cB(x,t )=0,

(23)

where b =2x*(1—8%)w /MJ?, ¢ =2x*/MwJ(1—S?) [Eq.
(7) in paper I]. Therefore, the representation of the
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Davydov soliton obtained from Eqgs. (20)-(22) is

172
P(x,t)= }iz‘i sech[u(x —xo— V)]
114
X exp 2T (x—xg)—E%, /# (24)
instead of
Blx,1)=— T’isz—)tanh[mx —xo—Vt)]. (25

The latter is the displacement of an amino acid molecule
from the equilibrium in the language of the coherent
state. Therefore, the physical content of this solution,
Eq. (24), is very clear. It is also known for the physical
mechanism and concept of the Davydov soliton. Howev-
er, Xiao and Yang incorrectly deduce the #* equation of
B(x,t), Eq. (23), from the solutions of the Davydov soli-
ton equations, Egs. (20)-(21), and assume that the
Davydov soliton satisfies the equation of motion of a ¢*
chain. If Xiao and Yang’s idea and result for the
Davydov soliton satisfying the ¢* equation, Eq. (23), were
right, then the Hamiltonian of the system corresponding
to the Eq. (23) would be the Davydov’s Hamiltonian or
its parts. However, it is now, in fact, of the form

2
9B, (1)
Bat —W(B,(t)=B,_(1)*—1bB3 (1)

H=2[M

+CB§,(t)] .

However, this is not Davydov’s Hamiltonian or its
parts. Simultaneously, the problem now facing us is the
following: what are the equations of motion of the
Davydov soliton? Equations (3) and (6), or Egs. (2) and
(7) in paper I? In fact, they are neither Egs. (3) and (6),
nor Egs. (2) and (7). In this context, we feel that the
Davydov soliton does not satisfy the equation of motion
of a ¢4 chain. Therefore, we can also not use classical
statistical mechanics chains to deal with some of thermal
properties of the a-helix protein. Naturally, the results
obtained by this way are also unreliable [21,22].

Certainly, the solution of the Davydov soliton, Eq.
(24), has a close relationship with one of the displace-
ments of the molecule or the deformation of a chain, Eq.
(25). Due to the existence of deformation of the chain,
the exciton can become a self-trapped state or the
Davydov soliton through the interaction with deforma-
tion. The relation between them has basically an analogy
with the SLAC pocket model of the confinement of quark
in a hadron, the hadron model, in elementary particle
physics [23].

The author would like to acknowledge the ICMP for
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